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ABSTRACT 
Hearing impairment is the number one chronic 
disability-affecting people in the world.  Background 
noise is particularly damaging to speech intelligibility 
for people with hearing loss especially for sensorineural 
loss patients.  Several investigations on speech 
intelligibility have demonstrated that sensorineural loss 
patients need 5-15 dB higher Signal to Noise Ratio 
(SNR) than the normal hearing subjects. This paper 
describes Fast Recursive Discrete Cosine Transform 
Power Normalized Least Mean Square (simply DCT-
LMS) algorithm to improve the SNR and to reduce the 
convergence rate of the Least Means Square (LMS) for 
sensorineural loss patients.  
 
The Discrete Cosine Transform (DCT) has good ortho-
normal, separable, and energy compaction property. 
Although the DCT does not separate frequencies, it is a 
powerful signal decorrelator.   It is a real valued 
function and thus can be effectively used in real-time 
operation. The advantages of DCT-LMS as compared 
to standard LMS algorithm are shown via SNR and 
eigenvalue ratio computations. The computer 
simulations results show superior convergence 
characteristics of the proposed algorithm and faster 
convergence speed and better time and frequency 
characteristics. In this work we have used fast recursive 
DCT to reduce the number of multiplications and 
additions.  
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1. Introduction 
Hearing impairment is the preamble chronic disability, 
affecting people in the world.  Many people have great 
difficulty in understanding speech with background 
noise.  This is especially true for a large number of 
elderly peoples and sensorineural impaired persons. 
Hearing loss or deafness can be broadly classified into 
2 types. Conductive loss: This is associated with a 

defect of the middle ear or eardrum. This type of 
hearing disability can be measured by audiograms and 
is considered as a mild disability.  Because, it attenuates 
the incoming acoustic signal without introducing any 
significant distortion. So the intelligibility of the signal 
can be easily resorted by amplification. Sensorineural 
loss: This is a broad class of hearing impairments its 
origin is in the cochlea or auditory nervous system. 
Sensorineural loss disorders are difficulty to remedy. 
This type of defects may be due to congenital or 
hereditary factors, disease, tumors, old age, long-term 
exposure to industrial noise, acoustic trauma or the 
action of toxic agents etc. 
 
The sensorineural loss patient’s experiences difficulty 
in making fine distinction between speech sounds, 
particularly those having a predominance of high 
frequency Energy [5], [16].  He may hear the speaker’s 
voice easily, but be unable to distinguish. For example 
between the words ‘fat’ and ‘sat’ [7], [9]. Two features 
of sensorineural impairment particularly detrimental to 
the perception of speech are high tone loss and 
compression of the dynamic range of the ear.  A high 
tone loss is analogous to low pass filtering. 
Amplification of the high tones may improve 
intelligibility, but in these circumstances dynamic range 
of the ear is a handicap [13], [14]. Because the dynamic 
range of the impaired ear may not be sufficient to 
accommodate the range of intensities in speech signals. 
So, the stronger components of speech are perceived at 
a level, which is uncomfortably loud, while the weaker 
components are not heard at all [10], [11], [16]. 

 
Several investigations on speech intelligibility have 
demonstrated that subjects with sensorineural loss 
patients need 5 to 15db higher SNR than the normal 
hearing subjects. While most of the defects in 
transmission chain up to cochlea can   now-a-days be 
successfully rehabilitated by means of surgery. The 
great majority of the remaining inoperable cases are 
sensorineural hearing impaired patients [5], [16]. 
Digital signal processing methods offer great potential 
for designing a hearing aid   but, today’s Digital 
Hearing Aid are not up to the expectation for 
sensorineural loss patients.   Hearing-impaired patients 
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applying for hearing aid reveal that more than 50% are 
due to sensorineural loss. So for only Adaptive filtering 
methods are suggested in the literature for the 
minimization of noise from the speech signal for 
sensorineural loss patients [8]. 
 
 
1.1 Adaptive Filtering   
The least mean square algorithm was first introduced by 
Widrow and Hoff in 1959 is simple, robust and is one 
of the most widely used algorithm for adaptive filtering.  
LMS algorithm is very popular because of its simplicity 
and easy of computations. LMS algorithm is generally 
the best choice for many different applications [18], 
[19]. This method can be effectively applied to reduce 
the noise i.e. to improve the SNR for sensorineural loss 
patients [6], [12], [15]. Unfortunately, its convergence 
rate is highly dependent on the feedback coefficient  µ 
and the input power to the adaptive filter [18], [19].  
The mean square error of an adaptive filter trained with 
LMS decreases over time as a sum of exponentials 
whose time constants are inversely proportional to the 
eigenvalues of the autocorrelation matrix of the filter 
inputs.  Therefore, small eigenvalues create slow 
convergence modes in the means square error function.  
Large on the other hand, put a limit on the maximum 
learning rate that can be chosen without encountering 
stability problems [1]-[3]. 
 
The DCT has a strong energy compaction property.  
Most of the signal information tends to be concentrated 
in a few low frequency components of the DCT.   It is a 
close relative of Discrete Fourier Transform (DFT) – a 
technique for converting a signal into elementary 
frequency components, and thus DCT can be computed 
with a Fast Fourier Transform (FFT).  Unlike DFT, 
DCT is a real valued and provides a better 
approximation of a signal with fewer coefficients.  The 
DCT is central to many kinds of signal processing [18]. 
For non-stationary signals like speech signals, the DCT 
provides good approximation of a signal with fewer 
coefficients [3], [4]. 
 
 
1.2 A Fast Recursive DCT Algorithm 
A block transform based on the DCT or DFT is 
equivalent to a filter bank consisting of multiple band 
pass filters.  Such a filter bank is called as a Time 
Domain Aliasing Cancellation Filter bank (TDAC)  
The DCT of a data sequence 

 is defined as: ( ), 0,1, .........( 1)x m m M= −
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The basis set actually used in TDAC systems is 
slightly modified and takes on the form: 
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Where  is the windowed input sequence.  ( )z n
Such TDAC with the DCT as the transform is called as 
the Modified Discrete Cosine Transform or MDCT. 
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Where, are the spectral co-efficient.  In both  ( )X k

expressions . The entire transform 
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of the order O N . Similarly for the IMDCT, we 
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additions, again a complexity of .  Ideally we 
would like computation times logarithmic or at least 
linear in the size of the input block length to make the 
use of these transforms feasible in real time signals. 
This in turn motivates us to look for algorithm, which 
computes the MDCT and the IMDCT expressions as 
fast as efficiently as possible. 

(O N

 
Generally fast MDCT algorithms can be broadly 
classified into two categories: indirect computation and 
direct computation.  The proposed algorithm belongs to 
the second type.  Indirect computation makes use of 
existing fast algorithms such as the FFT, FHT etc., to 
compute the MDCT. Direct computation reduces the 
computational complexity by matrix factorizations and 
recursive decomposition. This algorithm is similar to 
decimation in frequency Cooley-Tuckey FFT. An N 
point MDCT is computed by first mapping it to an N/2 
point type-II DCT.  The DCT is further computed 
efficiently from two lower order DCT.  We have 
considered the special case of block length, which is a 
power of two.  Transform expression for the forward 
MDCT is  
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This is a 
2

N  point type - 2 DCT. Using the 

initialization condition in (6) and the type-2 DCT we 
can compute an N point MDCT. The type - 2 DCT can 
be computed using any of the available fast algorithms. 
But we are using a simple and modular recursive 
algorithm to compute the DCT. We can decompose the 
DCT in (8) into two balanced sub problems; the even 
indexed output and the odd indexed output, that is, 
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This is a DCT of length N/4. The odd indexed output 

 is given by, ( )O k

2
1

2 1( ) ( ( ) ( 1) ( / 2))
0

cos( (2 1 )(2 1)
2 / 2 2

N
kO k r n r n N

n
N

n k
N

π

−
+= + − +∑

=

+ + +

 

                   (13) 
Since   O  (0) ( 1);O= −
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This is again a DCT of length N/4. 
 
Since O  (0) ( 1);O= −

We get
(0)( )
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2
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O . Hence using (14) we can 

compute the odd indexed points of the DCT. The whole 

process can be repeated,  times, to 

compute the point type - DCT. Thus an MDCT 
of length N can be calculated using the property; 
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Arithmetic Complexity and Comparison with other 
algorithms: 
 Using the recursive formula in (17), we compute a 
length N MDCT with a type-2 DCT of length N/2.  This 
requires additional N-1 real additions. 
RA (N point MDCT)= RA (N/2 point DCT)+N-1 
RM (N point MDCT)= RM (N/2 point DCT) 
Where, RA=number of real additions and RM= number 
of real multiplications. 

The length N/2 type-II DCT is decomposed into two 
DCT’s each of length N/4.  This requires an additional 
N real multiplications and N/2 real additions.  The 
decomposition is performed recursively (log2N-1) 
times, giving a total complexity of N (log2N-1) real 
multiplications and (N/2) (log2N-1) real additions. 
In section 1, we briefly discussed about the 
Sensorineural loss patients and brief review about the 
convergence rate of the adaptive algorithm and about 
Fast DCT algorithm.  Section 2, considers LMS 
filtering in DCT domain. Simulated results are 
discussed in section 3 and section 4 concludes the 
paper. 
 
2. DCT-LMS: 
DCT-LMS is composed of three stages as shown in 
Figure 1.  
Stage 1: Transformation 
The input to the filter 

is .         (1) 1[ , ,........., ]T
k k k k nx x x x− −=

The transformation as explained in the previous section  
( ) [ ]k nu n T x=                                                       (2) 

The transform outputs then form a vector  
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Stage 2: Power Normalization 
The transformed signal is then normalized by 

the square root of their power . 
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methods 
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based on a sliding rectangular window or 
with the help of an arbitrary weighting filter. 
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In this work, power normalization is as follows. 
Power normalizing T x  transforms its elements  n k

( )(n kT x i  into 
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for  The small constant ε is 
introduced to avoid numerical instabilities when 

 is close to zero.  This type of LMS is referred 
to as power-normalized LMS. Discrete cosine 
transformation followed by a power normalization 
stage, causes the eigenvalues of the LMS filter inputs to 
cluster around one and speeds up the convergence of 
the adaptive weights. 
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The autocorrelation matrix after transformation and 
power normalization is thus  
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If  T decorrelated  exactly,  would be diagonal, 

 would be an identity matrix , and all the 

eigenvalues of  would be equal to one, but since 
practically the DCT is not a perfect decorrelator, this 
does not work out exactly [2]. But the power 
normalization makes the eigenvalues of the LMS filter 
inputs to cluster around one and speeds up the 
convergence of adaptive weights. 
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The output vector after power normalization is  
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Stage 3: LMS filtering 
The resulting equal power signals  are applied as 
an input to an adaptive linear combiner whose weights 

are adjusted using LMS algorithm described 
below.  The weight vector is defined as  

( )kv i
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 Then the filter output is given by 
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Where  is the desired signal. kd
This error is used to update the adaptive filter taps using 
a modified for of the LMS algorithm 

1( ) ( ) ( )k k kw i w i e v iµ+ = +                              (12) 

for  i n  0,1,........ 1.= −
The parameters used in algorithm are: 
Number of samples=20000, β=0.45  & filter order=32. 
 
3. Simulated results: 
The algorithm works on the corrupted speech signals 
with different types of noise signals like cafeteria noise, 
low frequency noise, babble noise etc. in several SNR. 
The various parameters like β, µ, and filter order were 
changed and their influence has been checked.   For 
different input SNR the output SNR and convergence 
ratios are calculated.  Although the SNR improvement 
has a limited meaning in the speech processing, we 
used this figure to indicate an over-all score. A more 

meaningful quantity is the eigenvalue spread is 
calculated to find out how well the algorithm 
convergence to the optimum Wiener solution. We have 
found that both the parameters, SNR and convergence 
ratio are strongly depending on the number of samples 
in the input signal, β, µ and filter order. As the number 
of samples in the input signal increases SNR decreases 
and convergence ratio increases.  Figure 2, 3, 4 and 5 
shows the input signal that is corrupted signal, desired 
signal and the filtered signal for different input SNR.   
The Table 1 shows the SNR of the DCT adaptive 
filtered outputs for different input signal SNR and 
Table 2 shows the computational complexity of DCT 
and Recursive DCT. 
 
4. Conclusion 
The SNR improvement of   at least 10 dB is obtained 
for the input SNR less than  and equal to 0dB, which is 
higher than the other  techniques like adaptive DFT 
(DFT-LMS) and adaptive Wavelet transform method 
(DWT-LMS) [17], [20]. We have already stated that the 
filtering technique depends on the number of samples in 
the input signal, β,  µ and filter order. In this work, we 
have tested for only few values and their influence has 
been checked. By testing with few more different 
values, it may be possible to get further improvements. 
The algorithm convergence time and stability depends 
upon the ratio of the largest to the smallest eigenvalues 
associated with the correlation matrix of the input 
sequence.  As the eigenvalue spread of the input 
autocorrelation matrix increases, the convergence speed 
of LMS deteriotes. So in this case, we derived the 
eigenvalue distribution for the input auto correlation 
matrix after DCT and power normalization.  This 
provides the good tracking capabilities in different 
noisy environments.  Even in the case of DFT-LMS and 
DWT-LMS, the eigenvalue distribution of the input 
autocorrelation matrix is calculated after the 
Transformation and power normalization. But, it is 
unable to give good SNR improvement and the 
convergence ratio is also very high [17], [20]. Proposed 
algorithm is not comparable with direct least mean 
square algorithm in terms of convergence ratio, where 
the eigenvalue ratio is in terms of thousands [6], [18].  
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Figure 1. Block Diagram of DCT-LMS algorithm 
 
 
 
 

Figure 2.  DCT response for input SNR= -10dB 
 
 
 



 

Figure 3. DCT response for input SNR= 0dB 
 
 
 
 

Figure 4.  DCT response for input SNR= +10dB 
 
 

Figure 5. DCT response for input SNR= -5dB 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SNR of the 
input signal 
In dB 

SNR of the 
output 
signal in dB 

Eigen 
value 
ratio 

-10  10.2    5.5 
   0   10.0    6.09 
 +5  11.24        5.44 
+10 13.20  5.6 

 
Table 1. Output SNR for different input SNR 
 
 
 

Type of 
transform  

Number of  
real 
multiplications  

Number 
of  real 
additions  

MDCT 32 28 
IMDCT 32 24 
Fast DCT 
using 
FFT 

 
 7 

 
15 

Fast 
Recursive 
DCT 

 
16 

 
8 

 
Table2.Shows the Computational complexity for 
N=8. 
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